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We investigate a new interpretation for tile Navier-Stokes corrections to the 
hydrodynamic equation of asymmetric interacting particle systems. We consider 
a system that starts from a measure associated with a profile that is constant 
along the drift direction. We show that under diffusive scaling the macroscopic 
behavior of the process is described by a nonlinear parabolic equation whose 
diffusion coefficient coincides with the diffusion coefficient of the hydrodynamic 
equation of the symmetric version of the process. 
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1. I N T R O D U C T I O N  

A fundamental question in mathematical physics is the derivation and the 
interpretation of the Navier-Stokes equations. One of difficulties in the 
interpretation of this equation is that it is not scaling invariant and thus 
cannot be obtained by a scaling limit. Although this problem is still out of 
reach for Hamiltonian systems, important progress has been made recently 
in the context of interacting particle systemsJ ~ 3.4.7-~01 

To fix ideas, consider the zero-range process evolving on the lattice 7/a. 
This dynamics can be informally described as follows: fix a jump rate 
g: r~ ~ It~+ such that 0 = g ( 0 ) < g ( n )  for n ~> 1 and a translation-invariant 
transition probability p(x, y)=p(0, y - x ) = p ( y - x ) .  If n particles are 
sitting on a site x, independently of what happens on the other sites, at 
rate g(n)p(y) one particle jumps to site x +  y. The configurations of the 
state space I%1 ~'' are denoted by the Greek letter r/, so that, for x in Z '~, 
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~/(x) represents the number of particles at site x for the configuration r/. 
The total number of particles is the unique conserved quantity and for 
each density p/> 0, there exists a translation-invariant product probability 
measure, denoted by vl,, that is invariant for the dynamics and for which 
the density of particles is p. 

The macroscopic evolution of the process under Euler resealing is 
described ~1 by the first-order quasilinear hyperbolic equation 

O,p + y. VF(p) =O (1.1) 

where the smooth function F and y e ~d are parameters depending on the 
microscopic dynamics (), = ~ :  zp(z) and F(O)= E,.,,[g(rl(O))] ): assume that 
the system starts from a product measure with slowly varying density 
po(eU). Under Euler scaling (times of order te -))  the density still has a 
slowly varying profile 2,:(t, eu) that converges weakly (in fact pointwisely at 
every continuity point ~61) to the entropy solution of Eq. (1.1) with initial 
data P0- 

In the context of asymmetric interacting particle systems the 
Navier-Stokes equation takes the form 

O,p':+ y. VF(p ~) = e ~ O,,,(D,./(p':) O,,jp ~) (1.2) 
i , j  

where D is a diffusion coefficient. Three different interpretations have been 
proposed for the Navier-Stokes corrections: 

(a) The incompressible limit (z" 3): Consider a small perturbation of a 
constant profile 0: po=O+ea.  Assuming that this form persists at later 
times [p':(t, u ) =  0 +  ca(t, u)], we obtain from (1.2) the following equation 
for a,~=a(te -~, u): 

O,a,: + e -'F'(O) y.a,: + (1/2) F"(O) y. Va~: = D,j(O) ~. O,],. ,,a,: + O(e) 
i . j  

A Galilean transformation m,:(t ,u)=a+:(t ,u+e-t tF'(O)y) permits us to 
remove the diverging term of the last differential equation and to get a limit 
equation for in = lim,: _ 0 mr., 

O,m + (1/2) F"(O) y. Vm 2 = D,.j(O) ~. O~,,. ,,lm 
i , j  

(b) First-order correction to the hydrodynamic equation()'71: Fix a 
smooth profile Po: Ru--* ~+ and consider a process starting from a product 
measure with slowly varying density po(eu). We have seen that under Euler 
scaling the density is still a slowly varying profile 2,:(t, eu) that converges 
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weakly to the entropy solution of Eq. (1.1) with initial data Po. This second 
interpretation asserts that the solution of Eq. (1.2) with initial profile Po 
approximates ).,: up to the order e: 

e - ' ( 2 , : -  p':) ~ 0 

in a weak sense as e ~ 0. 

(c) Long-time behaviorS7': The third interpretation consists in ana- 
lyzing the behavior of the solution of Eq. (1.2) on time scales of order re-t. 
Let b,:(t,u)=p(te-J,u). From (1.2) we obtain the following equation 
for b,:: 

O,b,: + e -'),. VF(b,:) = Y" O,,(D~.y(b,:) O,jb,:) 
Lj  

To eliminate the diverging term e-~y. VF(b,:), assume that the initial data 
(and therefore the solution at any fixed time) are constant along the drift 
direction: y. Vpo = O. In this case we get the parabolic equation 

O,b,: = ~ O,,,(D~,j(b,:) ~,,jb,:) 
i . j  

which describes the evolution of the system in the hyperplane orthogonal 
to the drift. 

Notice that while the first and third interpretations concern the 
behavior of the system under diffusive rescaling, the second one is a state- 
ment on the process under Euler rescaling. Interpretations (a) and (b) have 
been proved for asymmetric simple exclusion processes in dimensions 
d>~ 3 q3"7~ and a double variational formula for the diffusion coefficient was 
deduced. As one would expect, the diffusion coefficients of the two inter- 
pretations are the same and '9~ may be expressed by a Green-Kubo for- 
mula. It was also proved (Corollary 6.2, ref. 8) that the diffusion coefficient 
is strictly bounded below in the matrix sense by the diffusion coefficient 
that governs the evolution of the symmetric process. 

In contrast with interpretations (a) and (b), the third one is meaning- 
ful in dimension d>~ 2. However, since the initial profile is constant along 
the drift direction, this third interpretation gives no information on the 
drift in this direction. Moreover, as noticed by S. Olla, the zero-range 
dynamics is such that particles do not feel the gradient of the profile. It is 
therefore not surprising that for zero-range processes the diffusion coef- 
ficient, at least in the direction orthogonal to the drift, is diagonal and 
equal to the diffusion coefficient of the symmetric process. 
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The purpose of this paper is to give a rigorous proof  of the third inter- 
pretation in the case of asymmetric zero-range processes and prove that the 
diffusion coefficient of the Navier-Stokes corrections coincides in this case 
with the diffusion coefficient of the hydrodynamic equation of the sym- 
metric process under diffusive scaling. The approach adopted to prove this 
result is based on the relative entropy method introduced by Yau/J2~ 

The third interpretation relies on the following observation. We have 
already mentioned above that, in the interacting particle context, the Euler 
equation reduces to a nonlinear first-order hyperbolic equation 

O,p + ~,. VF(p) = 0 

In finite volume with periodic boundary conditions, say on the torus 
[0, 1 ],/, asymptotically as t T ~ ,  the entropic solution p(t, u) converges to 
a stationary solution which is constant along the drift: 

I 

p(t, .) ~ p.~_ (u) =fo  P~ + ry) dr 

provided P0 stands for the initial data. In particular, if we consider the 
asymptotic process under diffusive rescaling, we expect it to become 
immediately constant along the drift direction: 

),.V lim IFt,,v[q,N,_([uN])]=O 

for every t > 0 and for any initial profile. Here IF,,,, stands for the expecta- 
tion with respect to the probability measure on the path space D(R+,  N z'l) 
induced by the zero-range dynamics described above and a product 
measure k~ ̂ ' with slowly varying parameter. In contrast, on the hyperplane 
orthogonal to the drift, the profile should evolve smoothly in time accord- 
ing to a parabolic equation. 

2. NOTATION AND RESULTS 

,I _ 7 / " / N 7 / "  We consider particles on the discrete d-dimensional torus "~-N- 
moving according to a transition probability p on T'/v satisfying the fol- 
lowing two conditions: 

�9 p is shift invariant: p(x, y)=p(O, y - x ) : = p ( y - x ) .  

�9 p has a finite range: p(x) = 0 if Ix] > K. 

We denote by m the mean of the law p and by a the matrix of its second 
moments and we suppose that a is positive definite. 
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The system evolves with a zero-range dynamics, that is, the jump rate 
of a particle located on some site only depends on the number of particles 
on this site. Let 

t ,  . _ _  d 

be the configuration of particles at time t, namely for all x ~ T~N, q,(x) is the 
number of particles on site x; then (q,) is the Markov process on X '1 with N 

generator L N defined for functions f on X~, by 

L u f ( q )  = Z p ( y - -  x) g(q(X))[f(q X'') -- f ( q ) ]  
A', )" 

where r/"' ." is the configuration obtained after the jump of a particle from site 
x to site y. The jump rate function g from [~ to [~ + is such that g(O) = 0 and 
sup,,(g(n + 1 ) - g ( n ) ) <  oo. We denote by (S N) the semigroup associated to 
the generator LN. 

- N  d The product probability v,p on X N, whose marginal laws are defined by 

1 q~k 
9~(q(x) = k) - Z( ~o) g(k)! 

is invariant for the zero-range process. In the previous formula, g(k)! stands 
for the product g (1) - . .g (k )  and Z(~0) is a normalization constant. If we 
denote by ~0" the radius of convergence of the entire function Zk ~ok/g(k) !, 
we assume that 

lim Z(~o)= 
qJ T ~o* 

It can be easily shown that, under this condition, q(x) has some exponential 
moments: for every ~o < ~o*, there exists a positive constant 0 =  0(q~) such 
that 

9~V[exp Oq(x)] < ~ (2.1) 

In order to prove a one-block estimate, we impose some conditions on the 
jump rate g(.). We assume that either q(O) has all exponential moments 

-N [this is equivalent to requiring the partition finite under any measure v,p 
function Z(-)  to be finite on R+ because ~U[exp Oq(x)] = Z(q~eO)/Z(q~)]: 

(FEM) Z(~o)<m f o r a l l ~ o i n R +  
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or that g increases slower than linearly: 

(SLG) lim s u p , _ , ( g ( k ) / k ) = 0  

Notice that in the case where the rate jump is nondecreasing, at least 
one of these assumptions is satisfied. 

Let ~ be the increasing function such that ff~pl[r/(x)] = p. Notice that 
is an infinitely differentiable Lipschitz function on ~+ We denote by v N 

~r is the measure the measure vq, c, ~.-N In the case where p is a function on ~-~, v, 
on 1 -d with the macroscopic density p, that is, the product measure whose 
marginals are given by 

v;,"(~(x) k ) =  N = v,,,.,./m(q(O) = k) 

For  a continuous function Po on 1 -'/, consider such a sequence (V,,N,) of 
product initial distributions associated with the profile Po. In the case of a 
nondecreasing jump rate g(.), Rezakhanlou proved that the hydrodynamic 
behavior of the system under Euler scaling is described by the unique 
entropic solution of the equation 

O,p=m. Vcb(p) 

p(0 , . )  = po(. ) 

It is well known that as time increases, the solution p(t,.) converges to a 
stationary profile p.~(.) which is constant along the drift direction. More 
precisely, denote by ifi the normalized drift m/llml] 2 (where I[ml[2 is the 
Euclidean norm of m) and define p.,. : Ta--* R+ as 

P I 

p (u) = Jo p,,(u + d2 

Then, as t "r oo, p(t,. ) converges to p.,_(. ) in Ll(~-a). 
In view of this asymptotic behavior, we investigate here the asymmetric 

zero-range process under diffusive rescaling starting from an initial density 
profile constant along the drift direction m: for any 2 e ~, 

po(u + 2m) = po(U) (2.2) 

We prove that the macroscopic behavior of the zero-range process under 
diffusive rescaling (r/,N_,) is described by the solution of the parabolic non- 
linear equation 

O,p= A,,cb(p) (2.3} 
p(0 , . )  = po(.) 
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where A~ is the second-order differential operator  related to the covariance 
matrix a: if we denote by daG the matrix of the second derivatives of a func- 
tion G on R '~ and if X is a random vector with distribution p, then 

A ~ G = (V* aV) G = E( X* dZGX) (2.4) 

Before describing the strategy of the proof, we present some heuristic 
arguments that led to (2.3). For the zero-range process, the microcurrent 
reads 

dq,(x) = NZLNq,(x)  = N 2 ~, p( - y){ g(q,(x + y)) - g(r/,(x))} 
),  

By the local equilibrium assumption, on the average this expression is equal 
to 

N 2 ~ p( - y){ cb(p(t, (x + y) /N))  - cb(p(t, x /N))}  
.1" 

= N ~  p ( - y )  y .  V~(p( t ,  x /N))  
.|. 

+ (1/2) ~, p(y)  y*d2~(p(t ,  x /N))  y + ON(I) 
.|, 

Since for every t >1 O, p( t , . )  is constant along the drift direction, the first 
term vanishes and we obtain (2.3). 

The method we use was introduced by Yau I ~2~ and may be described as 
follows. Consider a sequence of initial measures pN whose entropy relative 

^' normalized by the volume, vanishes as N' r  m. It  consists in proving to v t,,,, 
that, at any time t, the normalized relative entropy of the process law at time 
tN 2 with respect to the measure ~ .-'- v~,u . u  . ~, where p(t, x) is the solution of 
(2.3), goes to zero as N goes to infinity. More precisely, let poe C2+'(-~ d) 
(0 < ~c < 1 ) be a strictly positive smooth function satisfying (2.2). We denote 
by p(t, x) the smooth solution of (2.3) in Ct '2+' (R+ x l-a). By the maxi- 
mum principle, we have 

inf inf p(t, u) = i n f  po(U) > 0 
t ~ [ O, T ]  u ~ ~ , l  u E T d 

sup sup p(t, u) = sup po(u)< oo 
I E [ O .  T ]  u e T  d tt, E ' ~  d 

We suppose that the sequence/z ^' of initial distributions for the zero- 
range process satisfies the entropy condition 

H(pN I 9~)= o(N a) (2.5) 

822/87/3-4-8 
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and we denote by/2~ the law pNsN, N2 of the speeded-up zero-range process 
at time t. Notice that by the explicit formula for the entropy and the 
entropy inequality, for every ~ > O, 

H(pN I vN) <~ ( I + y- ' )  H(IxN I ~ )  + ),-' Iog I ( d v ~  ~' 
\ avU 

for every y > 0. Therefore, choosing 7 small enough and keeping in mind 
the estimate (2.1), we get that 

H(IIN [ vN) <~ K, N d (2.6) 

for some finite constant K t. 

T h e o r e m  2.1. Under hypotheses (2.2), (2.5), and (SLG) or 
(FEM), for any t>_-0, 

H ( a ~ l  y,N)=o(N d) 

Then we obtain the following result. 

C o r o l l a r y  2.2. Under the assumptions of Theorem 2.1, for any 
bounded cylinder function ~Y: d X N ~  ~ ( ~  just depends on r/ through a 
finite number of sites) and for any continuous function F on Ta, we have 

lim N-"~F(x /N)  r,.~(~I)- F(u)E,.,,,,,,,[T]du dp, = 0  
N ~ ~f . ,  .X" 

where p(t, u) is the solution of (2.3). 

In the case where the zero-range process is attractive, the conservation 
of local equilibrium can be deduced from Corollary 2.2 using results of 
ref. 6. 

Corollary 2.3. Assume that the jump rate function g is non- 
decreasing and that the initial distribution pN is a product measure 
associated to a profile P0 of class C2+'(Ta). Under the assumptions of 
Theorem 2.1, for every bounded cylinder function 

lim pN~t,,N][ ~e] = V/,,. ,,)[ T]  
N ~ c~_, 

where p(t, u) is the solution of (2.3). 
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3. PROOFS 

Proof of  Theorem 2.1. Fix some 0c>O and denote by ~b, N the 
~ N We have density of the measure v N with respect to v~. 

~(rl) =exp {~ [q(x) log r x/N))-Iog Z~(~(p(t, x/N)))] (3.1) 

where ~0~ and Z~ are given by 

r Z( r  
�9 ~(~) = ~(~),  Z , ( u )  - Z(r 

N Let L*  be the We define f N  as the density of p U with respect to v s . 
"~ N adjoint operator of L N in L-(v~ ), that is, the Markov generator defined by 

L*,f(rl) = ~ p(x-- y) g(rl(X))[f( q ....... ) --f(r/)] 
.,c, .v 

and let (S N*) be the semigroup related to L*; then fU= o~ and 
O,fu=U2L*f u. 

The relative entropy H,v(t):= H(pN[ ~U) is given by 

r + ? ,  HN(t) = J ~ log ~ d~ u 

f f  f u  N l N = , l ~  ~uu dv~ 

Using the Gronwall lemma, we will establish Theorem 2.1 if we prove that 
there is a positive constant ~, such that 

HN( t )<~o(Na)+) ,  t HN(S) Ns (3.2) 

The proof of this inequality is divided into several lemmas. We start with 
an estimate of the relative entropy production. 

Lemma 3.1. For anyt>~0 

f 1 O,Hu(t)<~ -~ {N2L*~N--8,~f} fN, dv~ 
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Proof. As f u  is a solution of O,f~=N2L*f~ and 
smooth function in t, 

O,Ho(t) = f N~-L~cf~ �9 log dv~ 

+ f { U 2 L * f ~ - f  mo'lisN~ dv N (3.3) 
, ~ , , , < j  

"~ N Since L*  is the adjoint operator of L N in L-(v~ ), we have 

fL* a,,Ni N J r  av,, = 0  

and the first term of the right-hand side of (3.3) can be written as 

0,~2 

Moreover, for all positive numbers a and b, the basic inequality 

a[ log b - log a] ~ (b - a) 

shows that for any positive function h 

hLN(log 17) <~ LNh 

So the last integral is bounded above by 

t ,~s~} -~NN2L*~sVdv= I 

On the one hand, we observe from formula (3.1) that 

a'r 5" f~,~(x) a,,(p(t, x/U)) 0,,~(;(,, x/U)) Z'(e,(p(t, z/U))l'~ 
ON, - ~  t r x/N)) Z(cb(p(t, x/N))) ) 

A simple computation on the partition function Z shows that for any non- 
negative number 2, 

Z'(q~(2)) )~ 

z ( ~ ( ~ ) )  - ~(~) 

Benois et  al. 

as p(t,.) is a 
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Therefore, since p is the solution of (2.3), 

o,ON 
ON = 2 G( t, x / N ) ( q ( x ) -  p( t, x/N) ) ~'(p( t, x/N) ) 

A" 

where 

G( t, x/N) := 
A~ qS(p )( t, x/N) 
2~(p(t, x/N)) 

On the other hand, a straightforward computation shows that 

~qJ(p(t, y/N)) 1} N2L*ON N 2 ~ p ( x -  y) g(tl(X)) [~(p( t  ' x / N ) ) -  
ON x ,  

Now, using the Taylor expansion, we obtain 

~" p(x - y){ q~(p(t, y/N)) - ~(p(t, x/N))} 
) '  

N _ 

1 
+ ~ ~. p(z) z*d2qS(p(t, x/N)) z + o(N -2) 

2 

It results from assumption (2.2) that 

(~. zp(z)). V~(p(t, x/N)) = m. Vp(t, x/N) ~'(p(t, x/N)) = 0 

and from definition (2.4) that 

p(z) z*dZq~(p(t, x/N)) z = AoqS(p(t, x/N)) 
z 

Therefore, 

N 2 L ~  
ON - ~ g(~l(x)) G(t, x/N) + oN(l) ~ g(q(x)) 

x x 

where G is the function defined in (3.5). Notice that 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

A~q~(p(t, x/N)) = o(N d) (3.8) 
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because the left-hand side divided by N d vanishes as N T oo. Thus, from 
Lemma 3.1, (3.4), (3.7), and (3.8), we get that the time derivative of HN(t) 
is bounded above by 

f ~, G(t, x/N){ g(~l(x)) - ~(p(t, x/N)) 
A" 

-- ~'(p(t, x/N))(q(x) -p ( t ,  x/N))} f ,  N d v ~  N 

+ ON(l) ~ Y'. g(~l(X)) f N dv u + o(N a) (3.9) 
.v 

Using the entropic inequality, we have 

N 1 
f~ .  g (q(x) ) f~  dv~ <~ ~ H(,u~ [ 9, ) + ~  log f exp [0 .~  g(q(x))] d9 u 

for every 0 > 0. Since by assumption sup,,(g(n + 1 ) - g ( n ) ) <  oo, there exists 
a finite constant Ko such that g(k)<~ Kok for all k in ~. Therefore, the 
right-hand side of this expression is bounded above by 

1 N d 

HN(t) + log I exp[OKoq(O)] dv,,N. Y 

where p* = sup,, po(U) because the family of invariant measures { v N, 0~ 1> 0} 
is increasing in ~. For 0 small enough, by (2.1), the second term is bounded 
by NdC(p *, Ko). Hence, 

ON(1 ) I ~ g(rl(X)) f u dv u <~ C(p*, Ko) HN(t) + o(N a) 
A" 

(3.10) 

We now integrate in time inequality (3.9) and in view of (2.6) we can use 
the well-known one-block estimate (see, e,g., ref. 5) to replace the local 
function g(tl(X)) by its average on a large microscopic block with respect 
to the invariant measure with parameter equal to the density of particles in 
this block: 

Lemma 3.2. Under the assumptions of Theorem 2.1, for any t > 0 
and for any continuous function F on [0, t] x ~-d, 

lim lim ds F(s,x/N){gUl(x)) - r f,.u dyes =0 
I ~ _  N ~ _  ." 
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where 

1 
r/~.(x) (2l+ 1) a ~ q(Y) 

[ y - - x [  ~< I 

Replacing now r/(x) by a local average in a large microscopic block, 
we obtain from inequality (3.9), estimate (3.10), and Lemma 3.2 that the 
entropy HN(t) is bounded above by 

ds ~ G(s, x/N){ O(~.(x) )-- ~(p(s, x/N) ) 
. x  

-- r x/N))(q~.(x) - p(s, x/N))} f U dv u 

f2 +HN(O)+C(p*,Ko) dsH(p.~l~X)+o(Na)+R(l,N a) 

with 

lim lim N-aR(l, N a) = 0  
/ ~ J Z J  N ~ o c ,  

From assumption (2.5), HN(0) is bounded by o(Na). So applying now the 
entropic inequality, we obtain that this last expression is less than or equal 
to 

l fo ds log f exp [ y )- ~ G(s, x/N){ ~(q~.(x))- ~(p(s, x/N) ) 

- ~'(p(s, x/N))(q~.(x) - p(s, x/N))} ] d~., u 

f2 +o(Na)+R(l, Na)+(C(p*,Ko)+y -') dsHu(s) 

for any positive constant y. To conclude the proof of (3.2), it remains to 
show that there exists a positive constant )'0 such that, for any 0 ~< s ~< t, 

1 
lim sup li'm sup ~ log exp Yo ~ H(s, x/N){ #(r/(x)) - q~(p(s, x/N)) 

/ n  or_ N ~  e~ N .,- 

-- ~'(p(s, x/N))[ql(x) -- p(s, x/N)] } 1 d~u <~ 0 

This inequality is proved in ref. 5 using a large-deviation principle for qt(x) 
under ~.~. | 



5 9 0  B e n o i s  e t  al. 

Proof of Corollary 2.2. Let ~ be a bounded cylinder function on 
X a. Since F(.)  and p(t,.) are continuous and since ~ is bounded, the 
result will be proved if we show that 

l i m s u p l i m s u p f N - " ~  (21+1)  -d ~ z , .~(q)-E, , , , , . , , , , , [~]]d/J~<0 
l ~  ~ N - - , ~  x l y - - x [  ~</ 

To keep notation simple, we shall assume that ~u depends on the con- 
figuration only through site O: T(~/)= ~u(q(O)). Because of the entropic 
inequality, for any 7 > O, the last integral is bounded above by 

yN a .. 

x ~ ,  ~(q(y))-E,, ...... ,,,,[~] ] d~ N (3.11) 
I .v x i  ~< /  3 

We will choose 7 as a function of L By Theorem 2. I, the first term goes to 
0 as N Tm. Moreover, since oN is a product measure, the random variables 
(21+ 1)-a~l., ._,. ,i .</~(r/(y)) and (2 l+  l ) - a ~ l  ....... _,l.</~(q(Y)) are inde- 
pendent as soon as ] x t - x 2 ]  >2L So, applying the H61der inequality, we 
find that the right-hand side of (3.11) is less than 

' x - '  ........ ] 7N,,Z(2l+l)alogfexp 7 7J(q(y))_E, , ,  ,[~u] d~N 
�9 " ly - xl  ~< I 

Since the density profile p(t,.) is continuous, as N goes to m, this sum 
goes to 

1 
;v,,duT(2l+l)dl~ ,.,.~<~tku(q(Y))-E,',,,,..,[~]l]dv,,,. ., 

From inequalities e" ~< 1 + x + 2 -  ~x2e ' and log( 1 + x) ~< x, this integral is 
bounded above by 

du-7(21 +1 )a{Tf o,l~<~lIF(q(y))--E,,,,,,,[~] 

+ 2y-'(21 + 1 )_~a II ~11 ~. exp[ 2y(2l + 1 )a II ~11 ,~_ ] 
J 

To conclude, it is enough to set 7 = ( 2 l +  1)-ae,  apply the law of large 
numbers for 1T co, and let e go to 0. I 
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